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Abstract

Object-oriented libraries arise naturally from the
increasing complexity of developing related sci-
entific applications. The optimization of the use
of libraries within scientific applications is one of
many high-performance optimizations, and is the
subject of this paper. This type of optimization
can have significant potential because it can ei-
ther reduce the overhead of calls to a library, spe-
cialize the library calls given the context of their
use within the application, or use the semantics
of the library calls to locally rewrite sections of
the application. This type of optimization is only
now becoming an active area of research. The
optimization of the use of libraries within sci-
entific applications is particularly attractive be-
cause it maps to the extensive use of libraries
within numerous large existing scientific applica-
tions sharing common problem domains. This pa-
per presents an approach toward the optimization
of parallel object-oriented libraries.

ROSE(1] is a tool for building source-to-source
preprocessors, ROSETTA is a tool for defining the
grammars used within ROSE. The definition of
the grammars directly determines what can be
recognized at compile time. ROSETTA permits
grammars to be automatically generated which
are specific to the identification of abstractions
introduced within object-oriented libraries. Thus
the semantics of complex abstractions defined out-
side of the C++ language can be leveraged at
compile time to introduce library specific opti-

*This work was performed under the auspices of the U.S.
Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-
Eng-48.

mizations. The details of the optimizations per-
formed are not a part of this paper and are up to
the library developer to define using ROSETTA
and ROSE to build such an optimizing preproces-
sor. Within performance optimizations, if they
are to be automated, the problems of automat-
ically locating where such optimizations can be
done are significant and most often overlooked.
Note that a novel part of this work is the degree
of automation. Thus library developers can be
expected to be able to build their own specialized
compilers with a minimal compiler background.
The resulting compilers don’t extend the C++
language, but only extend the compiler’s ability
to recognize and leverage the use of user-defined
library abstractions within an application to per-
form optimizations.

For completeness, an example optimizing pre-
processor for a parallel array class library is
included to demonstrate the complete use of
ROSETTA and ROSE to build an optimizing pre-
processor. These results combine the use of the
recognition techniques presented in this paper
with those of a preprocessor-based transformation
approach. The specification of transformations
and the details of the construction of full prepro-
cessors is outside the scope of this short paper,
however some details of the compiler infrastruc-
ture we are using can be found in ROSE(1].

1 Introduction

To application programmers the use of a library to
provide new abstractions might appear to provide a
language extension specific to the application domain



targeted by the library’s designer. With an object-
oriented language the abstractions provided within
the library can be endowed with significant syntac-
tic sugar (function overloading) so as to make them
largely indistinguishable from an additional language
feature (such as a new type). Such object-oriented li-
braries are however not extensions of the language
for one essential reason; the C++ compiler does not
recognize or optimize the library’s abstractions. The
reason for this is that there is no mechanism to
communicate the library’s abstractions to the typi-
cal C++ compiler. Thus no mechanism exists to in-
troduce optimizations that are specific to a library’s
abstraction. A C++ language compilation approach
that would permit library writers to communicate the
optimizations associated with the abstractions within
their libraries would complete the essential step in
permitting object-oriented libraries to be considered
as equivalent to language extensions (or would at
least muddy the water). This paper presents an es-
sential piece of this work to open up the development
of C++ compilers so as to permit object-oriented
library /framework developers (instead of only com-
piler writers) to build portable and easily maintained
compilers that are capable of optimizing the abstrac-
tions represented by their libraries. We believe that
this work is a critical part of future performance op-
timization for object-oriented libraries.

We define a mechanism to build preprocessors to
automate the optimization of applications containing
user-defined abstractions via source-to-source trans-
formations. Clearly not all optimizations are appro-
priate for introduction via source-to-source transfor-
mation, but such an approach is intended to be com-
plementary to a vendor’s C++ compiler, which is
relied upon for all lower level optimizations. This
paper will present a powerful mechanism to repre-
sent a critical phase of that work; automatically rec-
ognizing the use of complex object-oriented abstrac-
tions at compile-time. Qur approach extends well
beyond the tedious limits of pattern matching and
automates the construction of whole grammars and
parsers to re-represent the program’s abstract syn-
tax tree (AST) within the compiler. The resulting
ASTs using the generated grammars are dramatically
simplified since they explicitly identify language ele-

ments (expressions and statements) specific to the
user defined object-oriented abstractions. Typically
such object-oriented abstractions are made available
in object-oriented libraries or frameworks, so in this
way our approach is well suited to the optimization
of applications using such libraries.

The following sections in the paper detail
ROSETTA’s use within ROSE, its implementation
and how it leverages existing projects particularly the
EDG C++ front-end and a modified version of the
SAGE II source code restructuring tool. In further
sections we describe some of the important features.
We present some performance results from the use of
this recognition approach within ROSE and finish
with conclusions about its use.

2 A Motivating Example

To make the discussion within the paper as concrete
and easily understood as possible, we will use a mo-
tivating example from the A++/P++ array class
library[13] and define our grammars to optimize this
example. ROSETTA, and ROSE, are not at all
specific to this or any other specific example. How-
ever, both ROSETTA, and ROSE, are being used
to optimize the performance of the A++/P++ array
class libraries.

Within our motivating example we consider the fol-
lowing trivial five-point stencil array operation:

floatArray A(100,100);
floatArray B(100,100);
Range I(1,98),J(1,98);

A(I,J) = B(I-1,1)+B(I+1,3)+B(I,J)+B(I,J+1)+B(I,J+1);

In this code fragment, A and B are multidimensional
array objects, floatArray. A++ is a serial array
class library, P++ is a parallel array class; data in
the arrays are distributed across multiple processors
if P4+ is used and communication is automatically
introduced. Both the A++ and P++ libraries share
an identical interface, so that the same code can be
developed using A++ and recompiled and executed
in parallel using P++. In this example, I and J are
Range objects that together specify an two dimen-
sional index space of the arrays A and B.



3 ROSETTA

ROSETTA is a tool developed for the manipu-
lation and construction of grammars. It permits
a C++4+ Meta-program to be defined which, when
executed, builds tools like Sage II [8] from the
user’s manipulation of the C++ grammar (using the
ROSETTA object-oriented library). Specifically, el-
ements of SAGE II source code form the defini-
tion of the C++ grammar’s implementation within
ROSETTA. ROSETTA is not specific to C++ in
any way, but is used currently for the development of
the C++ grammar and higher level grammars that
include user defined types, statements, expressions,
etc. It is not a novel part of this work to have de-
fined a mechanism to generate SAGE II, modified
or not. The novel aspect of this research is that
higher-level grammars can be automatically gener-
ated in addition to the modified SAGE II. This pa-
per presents ROSETTA as the mechanism by which
critical parts of a final preprocessor are customized
for a framework’s abstractions; and automatically
generated. Some aspects of the infrastructure for
building the final preprocessor are presented in ROSE

[1]-

3.1 Building Grammars

For our purposes, a specification of a grammar is a
set of product rules expressed in terms of terminals
and non-terminals to define a language’s constituent
elements. BNF notation is a common form for the ex-
pression of such rules. ROSETTA represents a class
library of terminals and nonterminals used to define a
grammar. To each grammatical element (terminal or
nonterminal object) in the ROSETTA application
we associate source code. When the Meta-level ap-
plication using the ROSETTA library is executed it
produces source code which can be used to build an
AST. ROSETTA’s automatically generated parsers
permit the creation of higher-level ASTs automati-
cally from the lower level C++ grammar’s AST (pars-
ing from EDG’s AST is provided as part of ROSE and
Sage II). The hierarchy of classes represented by this
source code is what we consider to be the implemen-
tation of the grammar. The default behavior is to

Root of
Grammar

erpseasions -

Figure 1: A simplified representation of the class hi-
erarchy of classes representing the C++ grammar.

build the SAGE II library (in a modified form) rep-
resenting an implementation of classes defining the
C++ grammar.

3.1.1 Building the C++4+ Grammar

It is relatively trivial (but lengthy) to define the C++
grammar in terms of terminals and nonterminals and
associate with the terminals and nonterminals source
code that implements those objects. The default
grammar is the C++ grammar and the source code
associated with it is essentially a modified form of
the SAGE II source code (though automatically gen-
erated). We consider an implementation of the gram-
mar to be a library of classes representing the differ-
ent language elements defined by a grammar (all pos-
sible statements, expressions, types, symbols, etc.).
We use a modified form of the Sage II library as the
implementation of the C+-+ grammar, but other li-
braries that implement grammars and form the basis
of different sorts of compiler tools exist[6, 5].

Figure 1 shows a simplified representation of the
class hierarchy associated with the C++ grammar as



// Examples of grammatical elements for "Array" Grammar
Grammar Array("Array™);

// Construction of Terminal objects for "Array" grammar
Grammar: :Terminal ArrayAssignOp ("ArrayAssignOp","Array");
Grammar::Terminal ArrayAddOp ("ArrayAddOp","Array");
Grammar: :

Grammar :
Grammar: :Terminal ArrayDivideOp ("ArrayDivideOp","Array");

// Construction of NonTerminal objects for "Array" grammar
Grammar::NonTerminal ArrayBinaryOp ("Array");
ArrayBinaryOp = ArrayAssignOp | ArrayAddOp 1

ArraySubtractOp | ArrayMultiplyOp |
ArrayDivideOp | ArrayAndOp | ArrayOrQOp;

Figure 3: Example Meta-Program specification of
Terminal and NonTerminal objects for ”Array”
grammar. Alternatively, higher level mechanisms in
ROSETTA can automatically generate equivalent
code from a class definition for the ” Array” object.

defined using ROSETTA. The actual hierarchy of
classes within the C++ grammar would include sev-
eral hundred or more additional classes to represent
all the specific operators etc. (terminals and non-
terminals within the definition of the grammar). It
is not practical within these figures to represent the
full complexity of the C++ grammar or the higher
level grammars which we additionally build.

3.1.2 Building Higher Level Grammars

Figure 3 shows examples of the declaration of ter-
minals and non-terminals associated with an exam-
ple ”Array” grammar. To simplify the figures we
will associate the letter X with the array object and
build an X grammar. Clearly X could stand for any
library abstraction. Figure 2 shows the modifica-
tion of the corresponding simplified C++ grammar
to build a higher-level grammar specific to a user-
defined abstraction, X, note that the grammar in-
cludes X types, X statements, and X expressions. An
AST built with this grammar clearly identifies lan-
guage elements based on the X abstraction. As in the
C++ grammar previously, in the actuel X grammar a
few hundred additional terminals and non-terminals

:Terminal ArraySubtractOp ("ArraySubtractOp”,"Array");
:Terminal ArrayMultiplyOp (“ArrayMultiplyOp",“Array")g

must be added to address the full complexity of the
C++ language (the full hierarchy of the classes defin-
ing the grammars would make the figures overly com-
plex). Within the AST defined by the higher level
rammars, searching for X statements for an arbi-
trary user defined abstraction, X, is simple because
of the natural classification that results from the re-
organization of the C++ AST into an AST.

Since higher-level grammars use the same source
code base for their generated code, the explicit re-
specification is not required except to add additional
terminals and non-terminals to define the higher level
grammar. In our motivating array class example we
define the array grammar with respect to the C++
grammar and using a system of constraints. For ex-
ample, the array user-defined type is represented in
the array grammar by a C++ grammar’s class type
combined with a constraint that the name of the user-
defined type was ” Array”. Additionally, within the
array grammar we add as new terminals and non-
terminals the public member functions of the array
objects so that they could be identified as formal el-
ements of the array grammar within expressions and
statements and be clearly represented within the AST
associated with the array grammar. Such specifica-
tion of additional terminals and non-terminals can
be automated from the class definition (the header
file) which is parsed and known at runtime of the
C++ Meta-program. The process means that gram-
mars can be automatically generated from class def-
initions. This greatly simplifies the construction of
library specific grammars.

Thus far we have shown how to build an X gram-
mar for the array object, but a separate one should
be considered to be built for the Range object so that
it too, as an the array class abstraction, can be rec-
ognized at compile-time.

3.2 Connections between Grammars

Figure 4 shows how the individual grammars are con-
nected in a sequence of steps; automatically gener-
ated parsers parse lower level grammars into higher
level grammars. The initial AST using the C++
grammar is built by the EDG front-end from a C++
application code. The following describes the steps:
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Figure 2: A simplified representation of the class hierarchy of classes representing the higher-level grammar
associated with a user-defined X abstraction.

1. The first step generates the EDG AST, this the parent AST recursively until the AST asso-

program tree has a proprietary interface and
is parsed in the second step to form the C++
Grammar’s AST.

. The C++ Grammar is generated by ROSETTA
and is essentially comformant with the SAGE 11
implementation. This second step is representa-
tive of what SAGE II provides and presents the
AST in a form where it can be modified with a
non- proprietary public interface. At this sec-
ond step the original EDG AST is deleted and
afterwards is unavailable.

. The third step is the most interesting since at
this step the C++ Grammar’s AST is parsed
into higher level grammars. Each parent gram-
mar (lower level grammar) parses itself into all of
its child grammars so that the hierarchy of gram-
mars is represented by corresponding ASTs {one
for each grammar). Transformations can be ap-
plied at any stage of this third step and modify

ciated with the original C+4 grammar is mod-
ified. At this point, an AST has been built us-
ing the Array and Range grammars (X Gram-
mars), which is specific to the Array and Range
objects contained within the A++/P++ array
class library. The X Grammar AST not only
identifies all Array and Range objects, but more
importantly identifies all Array and Range ex-
pressions and Array and Range statements. For
statement by statement optimizations Array and
Range statements can now be easily recognized
by traversing the AST. At the end of this third
step all transformations associated with Array
statements have been applied.

. The fourth step is simply to unparse the AST

associated with the C++ AST to generate op-
timized C++ source code. This completes the
source-to-source preprocessing.
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Figure 4: The connection of grammars (and parsers) representing the EDG front-end, SAGE and higher-level

abstraction specific grammars built by ROSETTA.

An obvious next and final final step is to compile
the resulting optimized C++ source code using the
vendor’s C++ compiler.

3.3 Connection to ROSE

ROSE provides for the specification of transforma-
tions and the automated introduction of such trans-
formations into application source code. More infor-
mation specific to ROSE can be found in [1]. The
coupling of ROSETTA with ROSE provides the
more complete source-to-source optimization mecha-
nism with which to introduce library/framework or
architecture dependent optimizations.

3.4 The Meta-program Level

A Meta-program level is used to build the source code
that will be compiled to be the preprocessor; the
Meta-program is a simple C++ program. The Meta-
program specifically defines the construction and ma-

nipulation of grammars using the ROSETTA Ii-
brary and the Backus Naur Form (BNF) like abstrac-
tions within ROSETTA. The output of the Meta-
program, when it is executed, is itself source code
(written to two files). This resulting source code
is compiled, with the ROSE infrastructure, to form
a preprocessor specific to a given framework. The
Meta-program can automatically generate a lot of
source code, typically 200,000 lines, but it can be
compiled in under a minute and once built into a
preprocessor, by the library developer, need not be
recompiled by application developers.

4 Implementation

The implementation of ROSETTA builds upon
SAGE 1II [8], which is built upon the Edison De-
sign Group (EDG) C++ front-end. Our work has
been greatly simplified by access to these two tools.
ROSETTA uses a modified form of the SAGE II



which we have developed. The purpose was to

e Permit the automate generation of what is es-
sentially a modified version of SAGE II

e Maintain the SAGE II source code (so that we
can fix minor bugs and make additions (tem-
plates, and support for new C++ features as
supported by EDG))

o Introduce the use of STL (as an outside library)
into the design of SAGE II

e Remove as many asymmetries from the imple-
mentation of SAGE II so that the generation of
the code could be simplified.

o Modify the SAGE II source to permit it to be
used as a basis for all higher level grammars.
This required naming the classes so that multi-
ple grammars could coexist (to build hierarchies
of grammars) in the same source-to-source com-
piler.

While using SAGE II as a basis for the grammars
that ROSETTA generates, ROSETTA adds the sig-
nificant capability to define grammars at the level of
BNF notation. C++ classes are used to represent
terminals and non-terminals and whole grammars.

5 Results

We have built high level grammars and used them
to recognize and classify the use of user defined ab-
stractions with numerous applications. The approach
is particularly simple since the grammars can be built
automatically from the library header files where the
abstractions (C++ classes) are defined. Some addi-
tional information is required if numerous default def-
initions are to be overridden. It is not possible within
this paper to present the ASTs for the higher level
grammars since graphs as complex as these are diffi-
cult to visualize and we currently lack mechanisms for
their presentation except for debugging purposes. At
present we have processed approximately 1.5 Million
lines of code through the tools built by ROSETTA.
Current work has been to expand the complexity and

Figure 5: Parallel performance of stencil array state-
ment with and without transformation. More sophis-
ticated cache-based transformations are also possible.

quantity of source code being used as tests within this
research work.

The most important use of this work has been in
combination with other mechanisms within ROSE.
Using grammars built by ROSETTA, and in con-
junction with ROSE, full optimizing preprocessors
have been built to optimize the performance of the
A++/P++ array class library. Significant speedups
were obtained depending on the array sizes; final per-
formance matched that of C and FORTRAN perfor-
mance.

Figure 5 shows the range of performance associ-
ated with different size arrays for the simple five
point stencil operator (our motivating example) on
the IBM Blue Pacific Computer. The results are in
no way specific to this array statement, moderate
and large size applications have been processed us-
ing preprocessors built with ROSE. The results show
the time (vertical axis) plotted vs. number of pro-
cessors for the motivating example problem using the
P++ array class library (P++ code). The lower plot-
ted line (Parallel Code) shows the transformed code,
demonstrating the improved performance associated
with the representation of the P++ code.



6 Related Work

A distinguishing feature of our work is that we au-
tomatically generate domain-specific grammars for
object-oriented frameworks or applications. Such
grammars include abstractions from object-oriented
frameworks which are not a part of the C++ gram-
mar. These grammars are built on top of the
C++ grammar, using similar modified SAGE II
source code as for the C++ grammar. In contrast,
other work defines a single grammar representing the
grammar of the base language itself (nothing higher
level or user-defined abstraction specific) MPC++[6],
NESTOR[5],SAGE[8]. As a result ROSETTA not
only builds the source code restructuring tools spe-
cific to the C++ language (the base language) but
also source code restructuring tools specific to the
targeted domain-specific library/framework. This
essentially provides a customized library/framework
specific source code restructuring tool for the li-
brary/framework.

7 Conclusions

The use of object-oriented frameworks can often re-
quire or benefit from compile-time optimization if the
abstractions are not sufficiently coarse grain and the
context of the abstraction’s use is important to the
optimization. Examples include array class libraries
(A++/P++, POOMA, Blitz, etc.), matrix class li-
braries (MTL, TNT, etc.), and complex grid geome-
try oriented frameworks like Overture[2]. This is the
case for numerous sorts of abstractions for which the
statements that use them consist of multiple expres-
sions. Alternatively, blocks of statements may benefit
from optimizations where their context relative to one
another can only be seen at compile time. Our ap-
proach is particularly effective for array class libraries
or higher level curvilinear grid libraries that include
more sophisticated mathematical operators (e.g. div,
grad, curl, laplacian, etc.). Examples could be array
class, matrix classes, particle classes, finite-element
classes, etc.

One of the limitations of this approach is that the
construction of grammars through the constraining

of the base level language grammar (the C++ gram-
mar) does not permit the addition of new keywords
to the C++ language. But this is precisely a
strength of our approach. We don’t want to add
new features to the base language or provide a mech-
anism to simplify this. To do so would be to open the
compiler in a fashion that would permit applications
to be built that would rely upon specific language
extensions, this would be counter productive to the
development of portable standardized object-oriented
libraries. Our goal is restricted to the optimization of
existing object-oriented libraries/frameworks. Pro-
viding such a more sophisticated mechanism to ex-
tend C++ would simplify the addition of new key-
words and language features but would be incon-
sistent with the use of the existing EDG front-end
and parser from EDG to SAGE II. Such work would
increase the complexity of ROSETTA well beyond
practical limits.

Since a library can not readily see the context of
how its elements are juxtaposed, only a compile-time
tool can be expected to discern the use of object-
oriented abstractions relative to one another within
a user’s application. With the abstract syntax tree
(AST) exposed, clearly a relatively simple pattern
matching approach could be used to identify the ob-
jects within an applications, but this is not enough
to be useful. To recognize where transformations can
be automatically introduced it is required that the
use of the object-oriented abstractions be identified
and classified into specific language/grammatical ele-
ments (expressions, statements, types, symbols, etc.).
With this level of detail the AST is greatly simplified
and can be traversed with the intent of abstraction
dependent optimization, syntax checking, etc.
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